380 research outputs found

    Imaging and Targeting of the Hypoxia-inducible Factor 1-active Microenvironment

    Get PDF
    Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than normal tissues. They are refractory to radiotherapy and anticancer chemotherapy. Although more than half a century has passed since it was suggested that tumour hypoxia correlates with poor treatment outcomes and contributes to recurrence of cancer, no fundamental solution to this problem has been found. Hypoxia-inducible factor-1(HIF-1) is the main transcription factor that regulates the cellular response to hypoxia. It induces various genes, whose function is strongly associated with malignant alteration of the entire tumour. The cellular changes induced by HIF-1 are extremely important therapeutic targets of cancer therapy, particularly in therapy against refractory cancers. Therefore, targeting strategies to overcome the HIF-1-active microenvironment are important for cancer therapy. To Target HIF-1-active/ hypoxic tumor cells, we developed a fusion protein drug, PTD-ODD-Procaspase-3 that selectively induces cell death in HIF-1-active/hypoxic cells. The drug consists of the following three functional domains: the protein transduction domain (PTD), which efficiently delivers the fusion protein to hypoxic tumor cells, the ODD domain, which has a VHL-mediated protein destruction motif of human HIF-1α protein and confers hypoxia-dependent stabilization to the fusion proteins, and the human procaspase-3 proenzyme responsible for the cytocidal activity of the protein drug. In vivo imaging systems capable of monitoring HIF-1 activity in transplanted human cancer cells in mice are useful in evaluating the efficiency of these drugs and in study of HIF-1-active tumor cells

    Microenvironment and radiation therapy

    Get PDF
    Dependency on tumor oxygenation is one of the major features of radiation therapy and this has led many radiation biologists and oncologists to focus on tumor hypoxia. The first approach to overcome tumor hypoxia was to improve tumor oxygenation by increasing oxygen delivery and a subsequent approach was the use of radiosensitizers in combination with radiation therapy. Clinical use of some of these approaches was promising, but they are not widely used due to several limitations. Hypoxia-inducible factor 1 (HIF-1) is a transcription factor that is activated by hypoxia and induces the expression of various genes related to the adaptation of cellular metabolism to hypoxia, invasion and metastasis of cancer cells and angiogenesis, and so forth. HIF-1 is a potent target to enhance the therapeutic effects of radiation therapy. Another approach is antiangiogenic therapy. The combination with radiation therapy is promising, but several factors including surrogate markers, timing and duration, and so forth have to be optimized before introducing it into clinics. In this review, we examined how the tumor microenvironment influences the effects of radiation and how we can enhance the antitumor effects of radiation therapy by modifying the tumor microenvironment

    PLK1 blockade enhances therapeutic effects of radiation by inducing cell cycle arrest at the mitotic phase

    Get PDF
    The cytotoxicity of ionizing radiation depends on the cell cycle phase; therefore, its pharmacological manipulation, especially the induction of cell cycle arrest at the radiosensitive mitotic-phase (M-phase), has been attempted for effective radiation therapy. Polo-like kinase 1 (PLK1) is a serine/threonine kinase that functions in mitotic progression, and is now recognized as a potential target for radiosensitization. We herein investigated whether PLK1 blockade enhanced the cytotoxic effects of radiation by modulating cell cycle phases of cancer cells using the novel small molecule inhibitor of PLK1, TAK-960. The TAK-960 treatment exhibited radiosensitizing effects in vitro, especially when it increased the proportion of M-phase cells. TAK-960 did not sensitize cancer cells to radiation when an insufficient amount of time was provided to induce mitotic arrest. The overexpression of a PLK1 mutant, PLK1-R136G&T210D, which was confirmed to cancel the TAK-960-mediated increase in the proportion of mitotic cells, abrogated the radiosensitizing effects of TAK-960. A tumor growth delay assay also demonstrated that the radiosensitizing effects of TAK-960 depended on an increase in the proportion of M-phase cells. These results provide a rational basis for targeting PLK1 for radiosensitization when considering the therapeutic time window for M-phase arrest as the best timing for radiation treatments

    Non-coplanar volumetric-modulated arc therapy (VMAT) for craniopharyngiomas reduces radiation doses to the bilateral hippocampus: A planning study comparing dynamic conformal arc therapy, coplanar VMAT, and non-coplanar VMAT

    Get PDF
    Background: Recent studies suggest that radiation-induced injuries to the hippocampus play important roles in compromising neurocognitive functioning for patients with brain tumors and it could be important to spare the hippocampus using modern planning methods for patients with craniopharyngiomas. As bilateral hippocampus are located on the same level as the planning target volume (PTV) in patients with craniopharyngioma, it seems possible to reduce doses to hippocampus using non-coplanar beams. While the use of non-coplanar beams in volumetric-modulated arc therapy (VMAT) of malignant intracranial tumors has recently been reported, no dosimetric comparison has yet been made between VMAT using non-coplanar arcs (ncVMAT) and VMAT employing only coplanar arcs (coVMAT) among patients with craniopharyngiomas. We performed a planning study comparing dose distributions to the PTV, hippocampus, and other organs at risk (OAR) of dynamic conformal arc therapy (DCAT), coVMAT, and ncVMAT. Methods: DCAT, coVMAT, and ncVMAT plans were created for 10 patients with craniopharyngiomas. The prescription dose was 52.2 Gy in 29 fractions, and 99 % of each PTV was covered by 90 % of the prescribed dose. The maximum dose was held below 107 % of the prescribed dose. CoVMAT and ncVMAT plans were formulated to satisfy the following criteria: the doses to the hippocampus were minimized, and the doses to the OAR were similar to or lower than those of DCAT. Results: The mean equivalent doses in 2-Gy fractions to 40 % of the volumes of the bilateral hippocampus [EQD2(40%hippos)] were 15.4/10.8/6.5 Gy for DCAT/coVMAT/ncVMAT, respectively. The EQD2(40%hippos) for ncVMAT were <7.3 Gy, which is the threshold predicting cognitive impairment, as defined by Gondi et al.. The mean doses to normal brain tissue and the conformity indices were similar for the three plans, and the homogeneity indices were significantly better for coVMAT and ncVMAT compared with DCAT. Conclusions: NcVMAT is more appropriate than DCAT and coVMAT for patients with craniopharyngiomas. NcVMAT significantly reduces radiation doses to the bilateral hippocampus (to 50 % that of the DCAT) without increasing the doses to normal brain tissue and other OAR

    Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha

    Get PDF
    PURPOSE: Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-(123)I-iodobenzoyl)norbiotinamide ((123)I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and (123)I-IBB for rapid imaging of HIF-1-active tumours. METHODS: Tumour-implanted mice were pretargeted with POS. After 24 h, (125)I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between (125)I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of (125)I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1alpha immunohistochemistry. RESULTS: (125)I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from (125)I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of (125)I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of (125)I-IBB was heterogeneous and was significantly correlated with HIF-1alpha-positive regions (R=0.58, p<0.0001). CONCLUSION: POS pretargeting with (123)I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours

    Experimental demonstration of quantum teleportation of a squeezed state

    Full text link
    Quantum teleportation of a squeezed state is demonstrated experimentally. Due to some inevitable losses in experiments, a squeezed vacuum necessarily becomes a mixed state which is no longer a minimum uncertainty state. We establish an operational method of evaluation for quantum teleportation of such a state using fidelity, and discuss the classical limit for the state. The measured fidelity for the input state is 0.85±\pm 0.05 which is higher than the classical case of 0.73±\pm0.04. We also verify that the teleportation process operates properly for the nonclassical state input and its squeezed variance is certainly transferred through the process. We observe the smaller variance of the teleported squeezed state than that for the vacuum state input.Comment: 7 pages, 1 new figure, comments adde

    Effects of antioxidants and NO on TNF-α-induced adhesion molecule expression in human pulmonary microvascular endothelial cells

    Get PDF
    SummaryPro-inflammatory cytokines initiate the vascular inflammatory response via upregulation of adhesion molecules on the endothelium. Recent observations suggest that reactive oxygen intermediates may play a pivotal role in TNF-α signaling and upregulate gene expression. We therefore evaluated the effects of pyrrolidine dithiocarbamate (PDTC; 0.1 mM) and spermine NONOate (Sper-NO; 1mM) on adhesion molecule expression and nuclear factor kappa B (NF-κB) activation induced by TNF-α(10ng/ml) in cultured human pulmonary microvascular endothelial cells (PMVEC). Treatment of cells with TNF-α for 4h significantly induced the surface expression of E-selectin and ICAM-1. Treatment with TNF-α for 8h significantly induced the surface expression of E-selectin, ICAM-1 and VCAM-1. The upregulation of these adhesion molecules was suppressed significantly by pretreatment with PDTC or Sper-NO for 1h. 8-Bromo-cyclic GMP (1mM) had no such effect, suggesting that the NO donor's effect was non-cGMP-dependent. The mRNA expression of E-selectin, ICAM-1 and VCAM-1, and activation of NF-κB induced by TNF-α for 2h were decreased significantly by the above two pretreatments. N-acetylcysteine (10mM) and S-nitroso-N-acetylpenicillamine (1mM) had little inhibitory effects on the cell surface and mRNA expression of these adhesion molecules stimulated by TNF-α. Treatment with TNF-α for 4h enhanced HL-60 leukocyte adhesion to human PMVEC, the effect of which was inhibited significantly by pretreatment with PDTC or Sper-NO. These findings indicate that both cell surface and mRNA expression of adhesion molecules in human PMVEC induced by TNF-α are inhibited significantly by pretreatment with PDTC or Sper-NO, possibly in part through blocking the activation of NF-κB. Although our in vitro results cannot be directly extrapolated to the in vivo situation, they suggest a potential therapeutic approach for intervention in cytokine-mediated inflammatory processes in the human lung

    Multi-institutional phase II study on the safety and efficacy of dynamic tumor tracking-stereotactic body radiotherapy for lung tumors

    Get PDF
    Background and purpose: This study aimed to evaluate the safety and efficacy of dynamic tumor tracking-stereotactic body radiotherapy (DTT-SBRT) for lung tumors. Materials and methods: Patients with cStage I primary lung cancer or metastatic lung cancer with an expected range of respiratory motion of ≥10 mm were eligible for the study. The prescribed dose was 50 Gy in four fractions. A gimbal-mounted linac was used for DTT-SBRT delivery. The primary endpoint was local control at 2 years. Results: Forty-eight patients from four institutions were enrolled in this study. Forty-two patients had primary non-small-cell lung cancer, and six had metastatic lung tumors. DTT-SBRT was delivered for 47 lesions in 47 patients with a median treatment time of 28 min per fraction. The median respiratory motion during the treatment was 13.7 mm (range: 4.5–28.1 mm). The motion-encompassing method was applied for the one remaining patient due to the poor correlation between the abdominal wall and tumor movement. The median follow-up period was 32.3 months, and the local control at 2 years was 95.2% (lower limit of the one-sided 85% confidence interval [CI]: 90.3%). The overall survival and progression-free survival at 2 years were 79.2% (95% CI: 64.7%–88.2%) and 75.0% (95% CI: 60.2%–85.0%), respectively. Grade 3 toxicity was observed in one patient (2.1%) with radiation pneumonitis. Grade 4 or 5 toxicity was not observed. Conclusion: DTT-SBRT achieved excellent local control with low incidences of severe toxicities in lung tumors with respiratory motion

    Evaluation of the Upper Gastrointestinal Tract in Ulcerative Colitis Patients

    Get PDF
    To analyze the clinical characteristics of patients with ulcerative colitis who have upper gastrointestinal lesions, we retrospectively reviewed the data of 216 patients with ulcerative colitis who underwent esophagogastroduodenoscopy at our institute in April 2008-March 2016. We investigated the endoscopic features and compared the clinical characteristics between the patients with and without upper gastrointestinal lesions. Forty-two patients (19.4%) had upper gastrointestinal lesions, including multiple erosions (n=18), bamboo joint-like appearance (n=17), mucosa with white spots (n=4), friable mucosa (n=2), ulcer (n=1), and purulent deposits within the mucosa (n=1) in the stomach and/or duodenum. Compared to the patients without upper gastrointestinal lesions, those with upper gastrointestinal lesions showed significantly more frequent extraintestinal manifestations (19.0% vs. 8.0%, p<0.05) and a significant history of colectomy (33.3% vs. 12.1%, p<0.01). There were no significant differences with regard to the sex ratio, age at esophagogastroduodenoscopy, gastrointestinal symptoms, time since the diagnosis of ulcerative colitis, type of colitis at the initial diagnosis of ulcerative colitis, or gastric atrophy between the groups. In conclusion, gastroduodenal lesions were identified in 19.4% of the patients with ulcerative colitis. Esophagogastroduodenoscopy is particularly recommended for ulcerative colitis patients who show extraintestinal manifestations and for those who have undergone a colectomy

    The novel latex agglutination turbidimetric immunoassay system for simultaneous measurements of calprotectin and hemoglobin in feces

    Get PDF
    Background/Aims Fecal calprotectin (Fcal) as well as the fecal immunochemical test (FIT) are useful biomarkers for detecting activity and mucosal healing in inflammatory bowel diseases. Here, we report the performance of simultaneous measurements of Fcal and FIT for ulcerative colitis (UC) patients using the newly-developed latex agglutination turbidimetric immunoassay (LATIA) system. Methods Fcal and hemoglobin were measured by the LATIA system in 152 UC patients who underwent colonoscopy. Fcal was also quantified with a conventional enzyme-linked immunosorbent assay (ELISA). Fecal markers were evaluated in conjunction with the mucosal status of UC, which was assessed via the Mayo endoscopic subscore (MES) classification. Results The LATIA system could quantify calprotectin and hemoglobin simultaneously with the same fecal samples within 10 minutes. The values of the Fcal-LATIA closely correlated with those of the Fcal-ELISA (Spearman rank correlation coefficient, r=0.84; P Conclusions The performance of the novel Fcal-LATIA was equivalent to that of the conventional Fcal assay. Simultaneous measurements with FITs would promote the clinical relevance of fecal biomarkers in UC
    corecore